Conformally flat Einstein-like 4-manifolds and conformally flat Riemannian 4-manifolds all of whose Jacobi operators have parallel eigenspaces along every geodesic

نویسندگان

  • Stefan Ivanov
  • Irina Petrova
چکیده

A local classification of all locally conformal flat Riemannian 4-manifolds whose Ricci tensor satisfies the equation ∇ ( ρ− 1 6 sg ) = 1 18 ds⊙ g as well as a local classification of all locally conformal flat Riemannian 4-manifolds for which all Jacobi operators have parallel eigenspaces along every geodesic is given. Non-trivial explicit examples are presented. The problem of local description of self-dual Einstein-like 4-manifolds is also treated. A complete explicit solution of the Stäckel system in dimension 4 is obtained. Running title: Einstein-like 4-manifolds

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Locally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat C-spaces

It is proved that every locally conformal flat Riemannian manifold all of whose Jacobi operators have constant eigenvalues along every geodesic is with constant principal Ricci curvatures. A local classification (up to an isometry) of locally conformal flat Riemannian manifold with constant Ricci eigenvalues is given in dimensions 4, 5, 6, 7 and 8. It is shown that any n-dimensional (4 ≤ n ≤ 8)...

متن کامل

Harmonic Morphisms with One-dimensional Fibres on Conformally-flat Riemannian Manifolds

We classify the harmonic morphisms with one-dimensional fibres (1) from real-analytic conformally-flat Riemannian manifolds of dimension at least four, and (2) between conformally-flat Riemannian manifolds of dimensions at least three.

متن کامل

Fourth Order Equations of Critical Sobolev Growth. Energy Function and Solutions of Bounded Energy in the Conformally Flat Case

In 1983, Paneitz [23] introduced a conformally fourth order operator defined on 4-dimensional Riemannian manifolds. Branson [1] generalized the definition to n-dimensional Riemannian manifolds, n ≥ 5. Such operators have a geometrical meaning. While the conformal Laplacian is associated to the scalar curvature, the Paneitz-Branson operator is associated to a notion of Q-curvature. Possible refe...

متن کامل

Conformally flat metrics on 4-manifolds

We prove that for each closed smooth spin 4-manifold M there exists a closed smooth 4-manifold N such that M#N admits a conformally flat Riemannian metric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997